Shapefiles

The Australian Community Reference Climate Data Collection @ NCI shapefile collection contains the following:

/g/data/ia39/aus-ref-clim-data-nci/shapefiles/data/aus_local_gov/

  • Shapefiles describing the states and territories of Australia

  • See aus_local_gov.ipynb for details

/g/data/ia39/aus-ref-clim-data-nci/shapefiles/data/aus_states_territories/

/g/data/ia39/aus-ref-clim-data-nci/shapefiles/data/australia/

  • Shapefiles describing the Australian coastline

  • See australia.ipynb for details

/g/data/ia39/aus-ref-clim-data-nci/shapefiles/data/broadacre_regions/

  • Shapefiles describing the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) broadacre zones and regions

  • See broadacre_regions.ipynb for details

/g/data/ia39/aus-ref-clim-data-nci/shapefiles/data/nrm_regions/

  • Shapefiles describing the natural resource management (NRM) clusters

  • See nrm_regions.ipynb for details

/g/data/ia39/aus-ref-clim-data-nci/shapefiles/data/river_regions/

  • Shapefiles describing the topographic drainage divisions and river regions derived from the Australian Hydrological Geospatial Fabric

  • See river_regions.ipynb for details

Software

Most programming languages have libraries for reading in shapefiles and selecting geographic data points that fall within them.

Python

If your workflow is based around Python and xarray, you can typically read a shapefile using geopandas. The resulting GeoDataFrame can then be passed to a function from the regionmask or clisops library to select grid points from an xarray data set that fall within the shape/s. The unseen library has built on regionmask to provide more sophisticated functionality.

Other languages

TODO.